97 research outputs found

    A Psychophysiological Assessment of the Efficacy of Event-Related Potentials and Electroencephalogram for Adaptive Task Allocation

    Get PDF
    The present study was designed to test the efficacy of using Electroencephalogram (EEG) and Event-Related Potentials (ERPs) for making task allocations decisions. Thirty-six participants were randomly assigned to an experimental, yoked, or control group condition. Under the experimental condition, a compensatory tracking task was switched between manual and automatic task modes based upon the participant\u27s EEG. ERPs were also gathered to an auditory, oddball task. Participants in the yoked condition performed the same tasks under the exact sequence of task allocations that participants in the experimental group experienced. The control condition consisted of a random sequence of task allocations that was representative of each participant in the experimental group condition. Therefore, the design allowed a test of whether the performance and workload benefits seen in previous studies using this biocybernetic system were due to adaptive aiding or merely to the increase in task mode allocations. The results showed that the use of adaptive aiding improved performance and lowered subjective workload under negative feedback as predicted. Additionally, participants in the adaptive group had significantly lower tracking errors scores and NASA-TLX ratings than participants in either the yoked or control group conditions. Furthermore, the amplitudes of the N1 and P3 ERP components were significantly larger under the experimental group condition than under either the yoked or control group conditions. These results are discussed in terms of their implications for adaptive automation design

    Cockpit Technology for Prevention of General Aviation Runway Incursions

    Get PDF
    General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft

    Runway Incursion Prevention System for General Aviation Operations

    Get PDF
    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results

    Recreation Embedded State Tuning for Optimal Readiness and Effectiveness (RESTORE)

    Get PDF
    Physiological self-regulation training is a behavioral medicine intervention that has demonstrated capability to improve psychophysiological coping responses to stressful experiences and to foster optimal behavioral and cognitive performance. Once developed, these psychophysiological skills require regular practice for maintenance. A concomitant benefit of these physiologically monitored practice sessions is the opportunity to track crew psychophysiological responses to the challenges of the practice task in order to detect shifts in adaptability that may foretell performance degradation. Long-duration missions will include crew recreation periods that will afford physiological self-regulation training opportunities. However, to promote adherence to the regimen, the practice experience that occupies their recreation time must be perceived by the crew as engaging and entertaining throughout repeated reinforcement sessions on long-duration missions. NASA biocybernetic technologies and publications have developed a closed-loop concept that involves adjusting or modulating (cybernetic, for governing) a person's task environment based upon a comparison of that person's physiological responses (bio-) with a training or performance criterion. This approach affords the opportunity to deliver physiological self-regulation training in an entertaining and motivating fashion and can also be employed to create a conditioned association between effective performance state and task execution behaviors, while enabling tracking of individuals psychophysiological status over time in the context of an interactive task challenge. This paper describes the aerospace spin-off technologies in this training application area as well as the current spin-back application of the technologies to long-duration missions - the Recreation Embedded State Tuning for Optimal Readiness and Effectiveness (RESTORE) concept. The RESTORE technology is designed to provide a physiological self-regulation training countermeasure for maintaining and reinforcing cognitive readiness, resilience under psychological stress, and effective mood states in long-duration crews. The technology consists of a system for delivering physiological self-regulation training and for tracking crew central and autonomic nervous system function; the system interface is designed to be experienced as engaging and entertaining throughout repeated training sessions on long-duration missions. Consequently, this self-management technology has threefold capability for recreation, behavioral health problem prophylaxis and remediation, and psychophysiological assay. The RESTORE concept aims to reduce the risk of future manned exploration missions by enhancing the capability of individual crewmembers to self-regulate cognitive states through recreation-embedded training protocols to effectively deal with the psychological toll of long-duration space flight

    Runway Incursion Prevention for General Aviation Operations

    Get PDF
    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results

    Going Below Minimums: The Efficacy of Display Enhanced/Synthetic Vision Fusion for Go-Around Decisions during Non-Normal Operations

    Get PDF
    The use of enhanced vision systems in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting approach and landing operations. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved enhanced flight vision system that shows the required visual references on the pilot's Head-Up Display. An experiment was conducted to evaluate the complementary use of synthetic vision systems and enhanced vision system technologies, focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under these newly adopted rules. Experimental results specific to flight crew response to non-normal events using the fused synthetic/enhanced vision system are presented

    Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    Get PDF
    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying

    Crew and Display Concepts Evaluation for Synthetic / Enhanced Vision Systems

    Get PDF
    NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that strive to eliminate low-visibility conditions as a causal factor to civil aircraft accidents and replicate the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Enhanced Vision System (EVS) technologies are analogous and complementary in many respects to SVS, with the principle difference being that EVS is an imaging sensor presentation, as opposed to a database-derived image. The use of EVS in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting operations to civil airports. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved EVS that shows the required visual references on the pilot s Head-Up Display. An experiment was conducted to evaluate the complementary use of SVS and EVS technologies, specifically focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under the newly adopted FAA rules which provide operating credit for EVS. Overall, the experimental data showed that significant improvements in SA without concomitant increases in workload and display clutter could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying

    Fusion of Synthetic and Enhanced Vision for All-Weather Commercial Aviation Operations

    Get PDF
    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were not adversely impacted by the display concepts although the addition of Enhanced Vision did not, unto itself, provide an improvement in runway incursion detection
    • …
    corecore